静岡社会健康医学大学院大学 木下 和生

適応免疫 adaptive immunity / 獲得免疫 acquired immunity

(1 リンパ球)を主体とした生体防衛システム。(1 リンパ球)には胸腺で成熟する(2 T 細胞)と骨髄で成熟する(3 B 細胞)がある。(4 抗原受容体)が極めて多様で、あらゆる抗原を認識できる一方、自己の成分には反応しない(5 免疫寛容)と言う仕組みがある。(2 T 細胞)の活性化には(6 抗原提示細胞)が必要で、(3 B 細胞)の活性化には(2 T 細胞)を要する場合と、要しない場合がある。

リンパ組織 lymphoid tissue

(7 骨髄),(8 胸腺),(9 リンパ節),(10 脾臓),皮膚,粘膜

抗原受容体の多様化

- B 細胞:(11 抗体)antibody (Ab)
 - = (12 免疫グロブリン) immunoglobulin (Ig)

遺伝子の変化による多様化機構

- 1. (13 V(D)J 組換え)
- 2. (14 体細胞突然変異)
- 3. (15 クラススイッチ組換え)
- T 細胞:(16 T 細胞抗原受容体)T-cell receptor (TCR)

遺伝子の変化による多様化機構

1. (13 V(D)J 組換え)

遺伝子の変化を担う酵素

- (17 RAG) recombination-activating gene
 - (13 V(D)J 組換え) を触媒する。
- (18 AID) activation-induced cytidine deaminase
 - (14 <mark>体細胞突然変異</mark>) と (15 クラススイッチ<mark>組換え</mark>) に必須。類縁の APOBEC3 とともに (19 発がん) への関与が注目されている。

免疫實容 immune tolerance

自己に反応しないように、自己を認識するリンパ球を抑制する仕組み。 B 細胞にも存在するが、T 細胞の方がより重要。

- (20 中枢性) central 自己反応性 T 細胞を生まれた直後に殺す。胸腺で行われる。 自己の MHC を程よく認識できるTCRを持つ T 細胞が選ばれる(正の選択)が、MHC との結合が強すぎる TCR を持つ T 細胞は除去される(負の選択)。
- 2. (21 末梢性) peripheral 自己反応性 T 細胞を抑制する。胸腺外で行われる。各臓器が発現している(22 PD-1) のリガンドや(23 制御性 T 細胞) により T 細胞の反応が抑えられる。

抗原提示細胞 antigen-presenting cell (APC)

(24 主要組織適合性複合体 MHC) major histocompatibility complex の上にペプチドを載せて T 細胞に抗原を提示する。ヒトでは(25 HLA)。 1. (26 樹状細胞) (27 マクロファージ) (3 B 細胞) (28 上皮細胞の一部) は貪食した微生物を消化して生じるペプチド断片を class II MHC に載せて、CD (29 4) 陽性の(30 ヘルパー) T 細胞に提示する。

2. (31 <mark>赤血球</mark>)以外のすべての細胞は自己の成分やウイルスに由来するペプチド断片を class I MHC に載せて、CD (32 8) 陽性の (33 細胞傷害性) T 細胞に提示する。

MHC は個人間で異なる、いわゆる(34 <mark>多型</mark>)があり、感染症や免疫疾患に対する感受性に影響する。(35 パンデミック)による絶滅を回避するための機構かもしれない。

CD, cluster of differentiation: 細胞の分化段階を区別するマーカータンパク

細菌感染の経過

皮膚外傷>細菌侵入>樹状細胞による貪食>(*)好中球による貪食>マクロファージによる貪食> (36 樹状細胞)のリンパ節への移動>ヘルパーT細胞活性化

>B細胞活性化>(37 胚中心反応)>クラススイッチ、高親和性抗体>中和、オプソニン作用、溶菌

>キラーT細胞活性化>perforinを用いて感染細胞の破壊

ウイルス感染の経過

ウイルス侵入>パターン認識受容体、NK細胞>感染細胞の抗原提示

>キラーT細胞活性化>感染細胞の破壊>樹状細胞による貪食> (*) 上と同様 参考資料

- 1. Cellular and Molecular Immunology 6-10th edition (Saunders)
- 2. ノーベル賞からみた免疫学入門 石田寅夫著 (化学同人) 講義スライドのダウンロードは以下より

https://moonbeam.sakura.ne.jp/gene/download

